Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(27)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38574479

RESUMO

This article investigates the radiation effects on as-deposited and annealed AlN films on 4H-SiC substrates under gamma-rays. The AlN films are prepared using plasma-enhanced-atomic-layer-deposition on an n-type 4H-SiC substrate. The AlN/4H-SiC MIS structure is subjected to gamma-ray irradiation with total doses of 0, 300, and 600 krad(Si). Physical, chemical, and electrical methods were employed to study the variations in surface morphology, charge transport, and interfacial trapping characteristics induced by irradiation. After 300 krad(Si) irradiation, the as-deposited and annealed samples exhibit their highest root mean square values of 0.917 nm and 1.190 nm, respectively, which is attributed to N vacancy defects induced by irradiation. Under irradiation, the flatband voltage (Vfb) of the as-deposited sample shifts from 2.24 to 0.78 V, while the annealed sample shifts from 1.18 to 2.16 V. X-ray photoelectron spectrum analysis reveals the decomposition of O-related defects in the as-deposited AlN and the formation of Al(NOx)ycompounds in the annealed sample. Furthermore, the space-charge-limits-conduction (SCLC) in the as-deposited sample is enhanced after radiation, while the barrier height of the annealed sample decreases from 1.12 to 0.84 eV, accompanied by the occurrence of the SCLC. The physical mechanism of the degradation of electrical performance in irradiated devices is the introduction of defects like N vacancies and O-related defects like Al(NOx)y. These findings provide valuable insights for SiC power devices in space applications.

2.
Small Methods ; : e2400043, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38462962

RESUMO

Surface engineering in perovskite solar cells, especially for the upper surface of perovskite, is widely studied. However, most of these studies have primarily focused on the interaction between additive functional groups and perovskite point defects, neglecting the influence of other parts of additive molecules. Herein, additives with -NH3 + functional group are introduced at the perovskite surface to suppress surface defects. The chain lengths of these additives vary to conduct a detailed investigation into the impact of molecular size. The results indicate that the propane-1,3-diamine dihydroiodide (PDAI2 ), which possesses the most suitable size, exhibited obvious optimization effects. Whereas the molecules, methylenediamine dihydroiodide (MDAI2 ) and pentane-1,5-diamine dihydroiodide (PentDAI2 ) with unsuitable size, lead to a deterioration in device performance. The PDAI2 -treated devices achieved a certified power conversion efficiency (PCE) of 25.81% and the unencapsulated devices retained over 80% of their initial PCE after 600 h AM1.5 illumination.

3.
Environ Sci Pollut Res Int ; 30(54): 114739-114755, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37906331

RESUMO

Environmental plastic wastes are continuously degraded into microplastics (MPs) and nanoplastics (NPs); the latter are more potentially harmful to organisms and human health as their smaller size and higher surface-to-volume ratio. Previous reviews on NPs mainly concentrate on specific aspects, such as sources, environmental behavior, and toxicological effects, but few focused on NPs-related scientific publications from a global point of view. Therefore, this bibliometric study aims to summarize the research themes and trends on NPs and also propose potential directions for future inquiry. Related papers were downloaded from the Web of Science Core Collection database on NPs published from 2008 to 2021, and then retrieved information was analyzed using CiteSpace 6.1 R2 and VOSviewer (version 1.6.). Research on NPs mainly involved environmental behaviors, toxicological effects, identification and extraction of NPs, whereas aquatic environments, especially marine systems, attracted more attentions from these scientists compare to terrestrial environments. Furthermore, the adsorption behavior of pollutants by NPs and the toxicological effects of organisms exposed to NPs are the present hotspots, while the regulation of humic acid (HA) on NPs behaviors and the environmental behavior of NPs in freshwater, like rivers and lakes, are the frontier areas of research. This study also explored the possible opportunities and challenges that may be faced in NPs research, which provide a valuable summary and outlook for ongoing NPs-related research, which may be of intrigue and noteworthiness for relevant researchers.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Adsorção , Bibliometria , Lagos
4.
Environ Pollut ; 336: 122515, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678738

RESUMO

Heavy metal contamination presents a profound threat to terrestrial biodiversity, yet the genetic adaptation and evolution of field organisms under persistent stress are poorly understood. In this study, the Cd-resistant earthworms Metaphire californica collected from the control (Meihua, MHC) and elevated-pollution (Lupu, LPC) pairwise sites were used to elucidate the underlying genetic mechanism. A 48-h acute test showed that LPC worms exhibited 2.34 times higher LC50 (50% lethal concentration values) compared to MHC ones. The Cd bioaccumulation, metallothionein (MT) protein contents, and MT gene expression of LPC M.californica were all significantly higher than those of MHC worms. The well-known MT gene of M.californica was successfully cloned and identified, however, the encoding nucleotide and amino acids displayed non-observable mutations and the phylogenetic tree also revealed that different populations clustered together. Additionally, the results of transcriptomics sequencing demonstrated 173 differentially expressed genes between LPC and MHC worms, primarily involved in stress-response and detoxification pathways, including signal transduction, material metabolism, and protein exports. The above results confirmed that the crucial MT gene did not undergo genetic mutations but rather exhibited global mRNA regulation responsible for the Cd resistance of M.californica. The current study partially disclosed the stress adaptation and evolution of organisms under long-term in situ contamination, which provides insights into maintaining biodiversity under adverse environment.

5.
Nanomicro Lett ; 15(1): 177, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428261

RESUMO

Nowadays, the soar of photovoltaic performance of perovskite solar cells has set off a fever in the study of metal halide perovskite materials. The excellent optoelectronic properties and defect tolerance feature allow metal halide perovskite to be employed in a wide variety of applications. This article provides a holistic review over the current progress and future prospects of metal halide perovskite materials in representative promising applications, including traditional optoelectronic devices (solar cells, light-emitting diodes, photodetectors, lasers), and cutting-edge technologies in terms of neuromorphic devices (artificial synapses and memristors) and pressure-induced emission. This review highlights the fundamentals, the current progress and the remaining challenges for each application, aiming to provide a comprehensive overview of the development status and a navigation of future research for metal halide perovskite materials and devices.

6.
Chemosphere ; 322: 138163, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36804250

RESUMO

Hazardous pollutants released into the real environment mostly own long-lasting cumulative characteristics and have progressively negative impacts on organisms, which are always neglected in laboratory toxicological tests. Here in this study, the different ecotoxicity of Ag nanoparticles (AgNPs) on earthworm Eisenia fetida was compared via various endpoints and transcriptional sequencing between the 28-day progressively repeated (from 60 to 80, final 100 mg/kg) and one-step (directly to 100 mg/kg) exposure. The results showed that earthworms under progressively repeated exposure showed significantly less biomass loss and reproductive inhibition, as well as lower Ag bioaccumulation (15.6 mg/kg) compared with one-step exposure (17.9 mg/kg). The increases in enzyme activities (superoxide enzyme and catalase) and gene expression (metallothionein) also implied higher antioxidant and genetic toxicity in one-step exposed earthworms compared with those from progressively repeated exposure. Furthermore, the transcriptomic analysis identified 582 and 854 differentially expressed genes in the treatments of one-step and repeated exposure respectively compared with the control group. The results of pathway annotation and classification suggested similar enrichments of damage induction but different in toxic stress responses, whereas earthworms from repeated exposure possessed more detoxification-related pathways like translation and multicellular organismal processes. This study innovatively took into account the impacts of processive exposure occurring in the real environment and elucidated distinctions of toxicity and adaptation caused by different exposure patterns, which provided the theoretical basis for real risk identification under the framework and guidance of traditional toxicology, also the implication for the improvement of eco-toxicological risk assessment.


Assuntos
Nanopartículas Metálicas , Oligoquetos , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Prata/metabolismo , Antioxidantes/metabolismo , Medição de Risco , Poluentes do Solo/análise , Solo , Superóxido Dismutase/metabolismo , Estresse Oxidativo
7.
ACS Appl Mater Interfaces ; 15(9): 12024-12031, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812095

RESUMO

One-dimensional (1D) organic-inorganic hybrid perovskite nanowires (NWs) with well-defined structures possess superior optical and electrical properties for optoelectronic applications. However, most of the perovskite NWs are synthesized in air, which makes the NWs susceptible to water vapor, resulting in large amounts of grain boundaries or surface defects. Here, a template-assisted antisolvent crystallization (TAAC) method is designed to fabricate CH3NH3PbBr3 NWs and arrays. It is found that the as-synthesized NW array has designable shapes, low crystal defects, and ordered alignment, which is attributed to the sequestration of water and oxygen in air by the introduction of acetonitrile vapor. The photodetector based on the NWs exhibits an excellent response to light illumination. Under the illumination of a 532 nm laser with 0.1 µW and a bias of -1 V, the responsivity and detectivity of the device reach 1.55 A/W and 1.21 × 1012 Jones, respectively. The transient absorption spectrum (TAS) shows a distinct ground state bleaching signal only at 527 nm, which corresponds to the absorption peak induced by the interband transition of CH3NH3PbBr3. Narrow absorption peaks (a few nanometers) indicate that the energy-level structures of CH3NH3PbBr3 NWs only have a few impurity-level-induced transitions leading to additional optical loss. This work provides an effective and simple strategy to achieve high-quality CH3NH3PbBr3 NWs, which exhibit potential application in photodetection.

8.
ACS Appl Mater Interfaces ; 15(1): 2368-2375, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36574499

RESUMO

Superhydrophobic surfaces possess enormous potential in various applications on account of their versatile functionalities. However, artificial superhydrophobic surfaces with ultralow solid/liquid adhesion often require complicated structure fabrication and surface fluorination processes. Here, we designed a superhydrophobic surface possessed of micro/nanoscale structures by employing facile and low-cost demolding and initiated chemical vapor deposition (iCVD) processes. The achieved micro/nanostructured superhydrophobic surface has a maximum static contact angle of ∼170°, a roll-off angle and contact angle hysteresis below 1°, ultralow solid/liquid adhesion for water droplets, and maintains excellent superhydrophobicity after exposure to strongly corrosive species, like strong acid/base and salt solutions, for 60 h. This reasonability-designed method of creating the superhydrophobic surface could provide valuable guidelines for the manufacture of transferable superhydrophobic surfaces and facilitate potential applications extending from optoelectronic devices to self-cleaning materials, such as solar cells, windows, and electronic displays.

9.
Chemosphere ; 311(Pt 1): 137027, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36419262

RESUMO

Reproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms' seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa. Sperm morphology analysis indicated deformity rates were up to13.2% (e.g. head swollen or missing) for worms from the most contaminated site, which coincided with DNA damages. Furthermore, the computer-assisted sperm analysis (CASA) system was employed for the evaluation of sperm kinetic traits. Results suggested earthworms exposed to higher contamination showed a lower sperm viability rate but faster sperm velocity after re-exposure with Cd solution (like the curvilinear velocity and straight-line velocity paraments) compared with those from relatively clean sites. The activities of lactate dehydrogenase and sorbitol dehydrogenase showed the highest 32.5% and 12.5% up-regulation respectively with the increased metal gradient. In conclusion, this study elucidated the earthworm reproductive toxicity, underlying reproductive compensation, metal stress-induced damages, and adaptive responses caused by heavy metal exposure, while also providing the possibility of sperm trait analysis (CASA) for related earthworm toxicological studies.


Assuntos
Metais Pesados , Oligoquetos , Masculino , Animais , Cádmio , Sêmen , Metais Pesados/toxicidade , Reprodução
10.
Sci Total Environ ; 858(Pt 1): 159632, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283532

RESUMO

Natural and anthropogenic causes have promoted the rapid increase in environmental selenium (Se) levels, and the complex Se metabolism and dynamic in organisms make it challenging to evaluate the toxicity and ecological risks. In this study, the kinetics of selenite in earthworm Eisenia fetida were investigated based on toxicokinetic (TK) model (uptake-elimination phases: 14-14 days). The results showed the highest sub-tissue Se concentrations in pre-clitellum (PC), post-clitellum (PoC) parts, and total earthworms were 95.71, 70.40, and 79.94 mg/kg, respectively, which indicates the distinctive Se uptake capacities of E. fetida. Se kinetic rates in PCs were faster than that of the total E. fetida for both uptake (Kus = 0.30-0.80 mg/kg/day) and elimination phases (Kee = 0.024-0.056 mg/kg/day). Longer half-life times (LT1/2) were observed in the total earthworms (17.85-47.15 d) than PCs (12.28-29.22 d), while non-significant difference was found for the kinetic Se bioaccumulation factor (BAFk) in PC and total earthworms (12-19), which demonstrates that Se can be efficiently bioaccumulated and eliminated in earthworm PC part. Besides, the significant increase Se concentration in PoC with rapid elimination in PC also illustrates that earthworms can alleviate the Se stress by the transformation strategy of Se from the head to tail tissues. In conclusion, the investigation of Se kinetic accumulation and elimination characteristics in this study is helpful for understanding the metabolism and detoxification processes of Se in earthworms, and also providing a theoretical basis for further Se risk assessment using TK model.


Assuntos
Oligoquetos , Selênio , Poluentes do Solo , Animais , Oligoquetos/metabolismo , Ácido Selenioso/metabolismo , Poluentes do Solo/análise , Toxicocinética , Selênio/metabolismo , Solo
11.
Sci Adv ; 8(47): eabq8160, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36427298

RESUMO

High mechanical ductility and high mechanical strength are important for materials including polymers. Current methods to increase the ductility of polymers such as plasticization always cause a remarkable drop in the ultimate tensile strength. There is no report on the ductilization of polymers that can notably increase the elongation at break while not lowering the ultimate tensile strength. Here, we report the salt-induced ductilization of an intrinsically conducting polymer, poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS). Treating highly conductive PEDOT:PSS with a salt such as sodium perchlorate can enhance its elongation at break from 8.5 to 53.2%, whereas it hardly affects the tensile strength. Moreover, the resistance of the ductilized PEDOT:PSS films is insensitive to the tensile strain before fracture and slightly increases by only ~6% during the cyclic tensile testing with the strain up to 30%. These effects are ascribed to the decrease in the Coulomb attraction between PEDOT+ and PSS- by the salt ions.

12.
J Hazard Mater ; 425: 128006, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34896725

RESUMO

Environmental stressors are persistent but most toxicological studies always evaluate the risk via short-term acute toxicity, while continuous toxicity and biological resistance across generations are relatively unknown. Here, earthworm Eisenia fetida was laboratory-reared and exposed to historically contaminated soils with an increasing metal gradient (CK, LM and HM), to investigate cross-generation toxicity and resistance of F1 and F2 worms. The results elucidated that biomass and juvenile hatching rate of F2 E. fetida showed maximum decreases of 20.8% and 38.5% than those of F1, which indicated severer toxicity of earthworm offspring. However, metal bioaccumulation in F2 E. fetida showed maximum increases of 150%, 49.2%, 19.7% and 25.5% than F1 for Cd, Cu, Zn and Pb, respectively. F2 E. fetida suffered less oxidative stress because the activities of superoxide dismutase (SOD), peroxidase (POD), glutathione (GSH), and malondialdehyde (MDA) contents were basically lower than that of F1. Meanwhile, the detoxification genes of metallothionein and heat shock protein 70 in F2 E. fetida showed maximum of 296% and 78.9% up-regulations, respectively, which suggested greater metal resistance of F2 E. fetida. This study confirmed the cross-generation toxicity and resistance of earthworms, which provides novel insights to reveal specific contaminant risks from longer lifecycles. CAPSULE: Earthworms under cross-generation exposure can develop metal resistance despite suffering worse toxicity effects.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Cádmio , Laboratórios , Oligoquetos/genética , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
13.
Environ Pollut ; 289: 117954, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426187

RESUMO

Toxicokinetic (TK) model provides a new approach to mechanistically elucidate the natural variation of metal handling strategy by adaptive and sensitive earthworm populations. Here, TK model was applied to explore the metal handling and resistance strategy of wild Metaphire californica with different historical exposure history through a 12-day re-exposure and another 12-day elimination incubation. M. californica populations showed different kinetic strategies for non-essential metals (Cd and Pb) and essential metals (Zn and Cu), which were closely related to their exposure history. M. californica from the most serious Cd-contaminated soil showed the fastest kinetic rates of both Cd uptake (K1 = 0.78 gsoil/gworm/day) and elimination (K2 = 0.23 day-1), and also had the lowest Cd half-life (t1/2 = 3.01 day), which demonstrated the potential Cd-resistance of wild M. californica from Cd-contaminated soils. Besides, the comparative experiment showed totally different metal kinetics of laboratory Eisenia fetida from field M. californica, suggesting the impacts of distinct exposure history and species-specifical sensitivities. These findings provide a novel approach to identify and quantify resistance using TK model and also imply the risk of overlooking existing exposure background and interspecies extrapolation in eco-toxicological studies and risk assessments.


Assuntos
Metais Pesados , Oligoquetos , Poluentes do Solo , Animais , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Toxicocinética
14.
Ecotoxicol Environ Saf ; 217: 112250, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915450

RESUMO

Selenium (Se) is an essential microelement for human or animal health. At high concentrations, it can cause Se poisoning. Human activities (such as coal burning and mining) threaten soil biota by mobilizing high levels of Se. We used the earthworm Eisenia fetida as a bio-indicator of environmental pollutants to investigate Se acute toxicity, enrichment, and distribution through exposure tests using filter paper, artificial soil and cow manure. The 24 h- and 48 h-LC50 for the filter paper contact test were 2.7 and 1.52 µg/cm2. In artificial soil test, the 14 d-LC50 and 14 d-biomass inhibition concentration (IC20) were 63.86 and 59.81 mg/kg, respectively. The cow manure resulted in a 2.2- and 2.6-fold higher LC50 and IC20 than artificial soil results, respectively. Earthworms accumulated the largest Se load (89.47 mg/kg) in artificial soil containing 80 mg Se/kg and only accumulated 90.3 mg/kg in cow manure containing 160 mg Se/kg; 46.6-60.59% of the total Se was distributed in the tail of E. fetida. The Se enrichment rate (SERSe) and bioaccumulation factor (BAFSe) scored higher in artificial soil than in cow manure with the same Se concentration exposure, and the highest SERSe was 6.21 and 6.31 mg Se/kg earthworm/d, respectively. The highest BAFSe was 1.49 in artificial soil and 0.75 in cow manure. Our results demonstrate that selenite is more toxic to earthworms living in artificial soil than in cow manure. E. fetida possesses certain Se detoxification mechanisms by distributing Se in the tail.


Assuntos
Oligoquetos/fisiologia , Selênio/toxicidade , Poluentes do Solo/toxicidade , Animais , Bioacumulação , Bovinos , Feminino , Humanos , Dose Letal Mediana , Esterco , Solo , Poluentes do Solo/análise
15.
ACS Appl Mater Interfaces ; 13(17): 20735-20745, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33900075

RESUMO

Conductive stretchable hydrogels and ionogels consisting of ionic liquids can have interesting application as wearable strain and pressure sensors and bioelectrodes due to their soft nature and high conductivity. However, hydrogels have a severe stability problem because of water evaporation, whereas ionogels are not biocompatible or even toxic. Here, we demonstrate self-adhesive, stretchable, nonvolatile, and biocompatible eutectogels that can always form conformal contact to skin even during body movement along with their application as wearable strain and pressure sensors and biopotential electrodes for precise health monitoring. The eutectogels consist of a deep eutectic solvent that has high conductivity, waterborne polyurethane that is an elastomer, and tannic acid that is an adhesive. They can have an elongation at a break of 178%, ionic conductivity of 0.22 mS/cm, and adhesion force of 12.5 N/m to skin. They can be used as conformal strain sensors to accurately monitor joint movement and breath. They can be even used as pressure sensors with a piezoresistive sensitivity of 284.4 kPa-1 to precisely detect subtle physical movements like arterial pulses, which can provide vital cardiovascular information. Moreover, the eutectogels can be used as nonvolatile conformal electrodes to monitor epidermal physiological signals, such as electrocardiogram (ECG) and electromyogram (EMG).


Assuntos
Adesivos , Materiais Biocompatíveis , Eletrodos , Géis , Dispositivos Eletrônicos Vestíveis , Eletrocardiografia , Eletromiografia , Humanos , Pressão
16.
Sci Total Environ ; 753: 142042, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32892003

RESUMO

Microplastics (MPs) have become a global environmental issue, however, the threats of metal-associated MPs to soil ecosystems and their involved processes have not been fully disclosed. In this study, a microcosm experiment with co-exposure of polyethylene and cadmium was conducted to determine their joint effects on the earthworm Eisenia fetida and to explore their relationship with the soil Cd availability that affected by MPs. The results showed that 28-day co-exposure of MPs and Cd significantly induced higher avoidance responses, weight loss and reduced reproduction of earthworms with the increasing content of pollutants. MPs and Cd jointly inhibited the superoxide enzyme (SOD) and peroxidase (POD) activities while increasing the glutathione (GSH) and malondialdehyde (MDA) activities in E. fetida. Histopathological changes and DNA damage to earthworm sperm also occurred in an MPs-dose-dependent manner. In addition, the presence of MPs significantly increased the soil diethylenetriaminepentaacetic acid (DTPA)-Cd concentrations by 1.20-fold and 1.43-fold while increasing the Cd bioaccumulation in E. fetida by 2.65-fold and 1.42-fold in low- and high-Cd-contaminated soil, respectively, which potentially contributed to the aggravation of the joint toxicity to E. fetida. In conclusion, this study demonstrated that microplastics could enhance the cadmium availability in the co-exposure soil which resulted in the joint toxicity of metal-associated MPs to soil organisms. CAPSULE: MPs increased soil Cd availability and potentially aggravated the joint toxicity with Cd to Eisenia fetida.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Cádmio/análise , Cádmio/toxicidade , Ecossistema , Microplásticos , Plásticos/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
17.
J Hazard Mater ; 406: 124738, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316673

RESUMO

The current study elucidates the impact of soil metal contamination on earthworm communities at the ecotype level. A total of 292 earthworms belonging to 13 species were collected in metal-contaminated soils from Wanshou (WSC), Daxing (DXC) and Lupu (LPC) plots (1.40-6.60, 29.4-126, 251-336 and 91.9-109 mg/kg for soil Cd, Cu, Zn and Pb, respectively) in Hunan Province, southern China. The results showed that the total earthworm density and biomass significantly decreased along the increasing metal-contaminated gradient while epigeic earthworms became more dominant than anecic and endogeic earthworms. Redundancy analysis (RDA) showed that soil pH, total nitrogen and Cd concentration were the primary factors influencing earthworm communities, explaining 33.7%, 29.1% and 26.7% of the total variance, respectively. In addition, epigeic earthworm Metaphire californica bioaccumulated more Cd (0.27-0.60 mmol/kg), while endogeic earthworm Amynthas hupeiensis and anecic earthworm Amynthas asacceus bioaccumulated more Cu (0.55-1.62 mmol/kg) and Zn (2.86-6.46 mmol/kg) from soil, respectively, which were related to their habit soils and showed the species-specific bioaccumulation features. Our study discovered the diverse responses of earthworm ecotypes to metal contamination and their specific features of metal bioaccumulation, provide insight for soil risk assessments and for biodiversity conservation from a niche partitioning perspective. CAPSULE: Earthworms of different ecotypes showed different responses to soil metal contamination and species-specific features of metal bioaccumulation.


Assuntos
Metais Pesados , Oligoquetos , Poluentes do Solo , Animais , Bioacumulação , China , Ecótipo , Metais Pesados/análise , Metais Pesados/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
18.
Langmuir ; 36(50): 15331-15342, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33295774

RESUMO

The ultrashort linear antimicrobial tetrapeptide BRBR-NH2 with an unnatural residue biphenylalanine (B) has potent and rapid antimethicillin-resistant Staphylococcus aureus (MRSA) activity but lacks hemolytic activity. The anti-MRSA activity of BRBR-NH2 is 8-fold more potent than that of WRWR-NH2 and 16-fold more potent than that of FRFR-NH2. However, how to influence their antimicrobial activities and mechanisms through the substitution of different aromatic hydrophobic residues is still unclear. In this work, to study the effects of varying hydrophobic interactions and membrane selectivities of BRBR-NH2, we performed multiple long-time (1000 ns) molecular dynamics (MD) simulations to investigate the interactions of a red blood cell (RBC) membrane and a Gram-positive bacterial cell membrane with three different tetrapeptides (BRBR-NH2, WRWR-NH2, and FRFR-NH2) under different ratios of peptides and lipids and also explored the changes in the membrane and structural characteristics of peptides. The binding energy results show that BRBR-NH2 interacts weakly with the RBC membrane, while not all BRBR-NH2 can be adsorbed to the RBC membrane surface. The MD simulation results produced significant local membrane thinning of multiBRBR-NH2 peptides in the Gram-positive bacterial cell membrane. An in-depth analysis of structural features and peptide-membrane interactions suggests that the aggregation of BRBR-NH2 on the membrane surface plays a crucial role in the destruction of the cell membrane. Taken together with the observed local membrane thinning, the in-depth analysis demonstrated that the interactions between the lipid bilayer and the BRBR-NH2 aggregation surface result in a local disturbance of the membrane structure. It can be concluded that the high anti-MRSA activity of BRBR-NH2 is attributed to the aggregation of BRBR-NH2 on the membrane surface. On the other hand, WRWR-NH2 and FRFR-NH2 peptides tend to bind with the membrane surface in a monomeric form and cover the membrane surface in a carpet-like manner. Therefore, these results provide an advanced microscopic understanding of how hydrophobic interactions or hydrophobic residues affect the antimicrobial activity and mechanism of antimicrobial peptides (AMPs).


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Peptídeos Catiônicos Antimicrobianos , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas , Testes de Sensibilidade Microbiana
19.
Poult Sci ; 99(11): 5344-5349, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33142450

RESUMO

Selenium (Se) has been recognized as an essential dietary nutrient for decades, and organic Se sources rather than inorganic ones are increasingly advocated as Se supplements. Earthworms have been studied as a feed additive and animal protein source for many yr. The aim of this study was to evaluate the effect of Se-enriched earthworm powder (SEP) on the antioxidative ability and immunity of laying hens. A total of 120 27-wk-old laying hens were randomly divided into 4 groups (30 hens per group). Laying hens were fed diets supplemented with SEP having 0, 0.5, or 1 mg/kg of Se or with earthworm powder alone. After 5 wk of supplementation, serum from the hens was tested for nutritional components (protein, globulin, albumin, triglycerides, total cholesterol, and glucose), antioxidative properties (glutathione peroxidase, superoxide dismutase, catalase, and nitric oxide), and immune responses (lysozymes, immunoglobulin G, IL-2, and interferon gamma). We found that SEP with 1.0 mg/kg of Se upregulated the hens' total protein, albumin, glutathione peroxidase, superoxide dismutase, IgG, and IL-2 and downregulated triglycerides, total cholesterol, glucose, and nitric oxide. These results indicate that SEP improves antioxidative levels and immune function of laying hens, indicating potential benefit from use of SEP as a feed additive in the poultry industry.


Assuntos
Suplementos Nutricionais , Imunidade , Oligoquetos , Selênio , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas , Dieta/veterinária , Feminino , Imunidade/efeitos dos fármacos , Oligoquetos/química , Oxirredutases/imunologia , Pós , Selênio/farmacologia
20.
Nat Commun ; 11(1): 4683, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943621

RESUMO

Wearable dry electrodes are needed for long-term biopotential recordings but are limited by their imperfect compliance with the skin, especially during body movements and sweat secretions, resulting in high interfacial impedance and motion artifacts. Herein, we report an intrinsically conductive polymer dry electrode with excellent self-adhesiveness, stretchability, and conductivity. It shows much lower skin-contact impedance and noise in static and dynamic measurement than the current dry electrodes and standard gel electrodes, enabling to acquire high-quality electrocardiogram (ECG), electromyogram (EMG) and electroencephalogram (EEG) signals in various conditions such as dry and wet skin and during body movement. Hence, this dry electrode can be used for long-term healthcare monitoring in complex daily conditions. We further investigated the capabilities of this electrode in a clinical setting and realized its ability to detect the arrhythmia features of atrial fibrillation accurately, and quantify muscle activity during deep tendon reflex testing and contraction against resistance.


Assuntos
Condutividade Elétrica , Epiderme , Monitorização Fisiológica/instrumentação , Movimento (Física) , Pele , Artefatos , Impedância Elétrica , Eletrocardiografia/instrumentação , Eletrocardiografia/métodos , Eletrodos , Eletroencefalografia/instrumentação , Eletroencefalografia/métodos , Eletromiografia/instrumentação , Eletromiografia/métodos , Desenho de Equipamento , Humanos , Monitorização Fisiológica/métodos , Polímeros/química , Sorbitol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...